Construction Goes Global: Infrastructure and Project Delivery Across Borders

By Dan McNichol, Author of The Roads That Built America

With Foreword by:
Michael W. Cooper, Head of Infrastructure, Asia Pacific Capital Financing, HSBC Bank Malaysia and
Trevor Sturmy, Head of Infrastructure and PPPs, Europe and Sub-Saharan Africa, HSBC Bank PLC

Europe Edition
Construction Goes Global

Foreword
By Michael W. Cooper and Trevor Sturmy, HSBC

Taller buildings, faster public transit, more brilliant skylines. Whether in Hong Kong or London, Shanghai or Dubai, multinational construction and infrastructure projects are no longer bound by borders, bringing interconnectedness and complexity. We see this new breed of cross-border super projects forming around two major trends common across Europe and Asia, and a third that is region-specific. First common trend: the rise of the mega general contractors, where the largest domestic firms in emerging markets have become subcontractors to firms that can operate across borders – mostly found in more developed regions. Second, the digitisation of supply chains are spreading and accelerating managerial logistics over a wider network of suppliers. In Asia, urbanisation is becoming the most profound driver of the new age of global construction. In Europe, what was old is becoming newer, greener, and even “smarter.” More on each below before a word on infrastructure finance.

Rise of Mega-General Contractors

Hyperactive new development in Asia is creating the need for infrastructure investment, engineering expertise, and sound risk management counsel. The biggest European and American firms able to operate across borders are partnering with the largest domestic firms present in other markets including Asia. Alliances can be observed where language and cultures meet: Spanish firms dominate Latin America; American and UK firms largely operate in English-speaking Australia, Canada, and the Middle East; French and German firms can be observed largely in Europe and Africa. Everyone is in the Far East.

Winners in Asia are firms that have the strongest relationships with regional authorities and the deepest understanding of cultural norms shaping the planning, designing, and constructing of these new mega projects. These are important attributes that Western firms need for successful project completion. Refraining from “owning” large, long-term workforces in countries where it is more efficient to rely on local partners seems to be the ideal model for most European and American firms. On the other side, this partnering effect is largely beneficial for most Asian firms. Now they have the experience to take on mega projects on their own, having gained the expertise in their past endeavours.

For example, some 15-20 years ago in China, European and Japanese know-how was necessary to rapidly expand its already impressive heavy freight and passenger rail lines and to deliver subway systems for its first- and second-tier cities. Sino Construction and China Construction Realty (CCR) and other state-owned enterprises learned alongside their Western and Japanese contractors who took the lead. Now, China is taking that expertise abroad to Africa and the Middle East, pairing their newly formed skills with lower costs as they import their own labour, sometimes with massive work camps. This leaves the established firms to discover a new business model as their formerly junior partners become their equals.

Lastly, if it’s not talent or expertise that Western firms export to Asia and other developing areas, it is likely heavy machinery needed to assemble their ambitious projects.

Digital Supply Chains

Next-generation supply chains have formed as a result of projects that require it. Components are manufactured around the globe. Parts are digitally measured offsite. Three-dimensional modelling is ensuring that when these pieces do arrive on site, they all fit together. In some cases the first visible inspections of fittings are during final assembly – thousands of feet above or below ground, hundreds of miles from origin. This acceleration of the design-build process is increasing efficiencies as well as raising the risk factors.

Project management teams visit and live—sometimes for years—overseas in order to be near foreign subcontractors and vendors. As projects become more complex, such as LNG plants manufactured in China and Korea and sent to Australia, this trend has become critical.

Asia: Urbanization

Any discussion of the built environment in Asia should begin with acknowledging that the movement of people into cities is a powerful, dominant force. Understanding how they work, live, interact, travel, enjoy each others’ company is key to meeting their needs.

As Asia continually marches towards urbanisation, China’s city populations are due to increase by more than 300 million by 2030.1 The Philippines might be an even stronger case in point of urbanisation driving construction. The island nation is forecast to add 25 million people to its urban centre—primarily Manila—by 2030. It has critical infrastructure needs in ports, rails and energy as well as significant needs for its waterways, roadways and airways. The other emerging markets in Asia also have strong demands for new infrastructure, which must improve as their economies shift from agrarian-based cultures to ones developing around manufacturing and service sectors.

1 “Bridging the Gap” HSBC Global Research, May 2013
Europe: Newer, Greener, Smarter
Applying new technology, techniques, and tools to refresh the more aged skin and bones of infrastructure in Europe is the third macro-trend for this region, akin to what urbanisation is to Asia. Smart grids send mountains of data back to their brains, but require significant infrastructure upgrades. Intelligent traffic management systems can save lives, but need to be installed on top of and often underground. Greener cars and trains powered by electricity or (relatively cheap) liquid natural gas require the installation of new terminals. It’s safe to say that Europe is getting a face-lift.

Infrastructure Finance
Just as global construction is becoming a multi-national affair, so too is infrastructure finance. Japanese banks are extraordinarily liquid. The French banks were absent for a while but have returned. Other banks, like HSBC, Standard Chartered and others play a very important role in select markets. We’re seeing with Chinese and Korean construction projects that they also bring in their own finance, particularly in projects in Africa and Asia.

The projects themselves—particularly where financing is concerned—are challenged. Banks increasingly resist providing the long-term funding required for infrastructure. Bond finance is becoming the preferred vehicle of finance for infrastructure. Bond investors don’t like construction risk. In a lot of cases, you’ll see banks taking the construction risk by offering loans during the construction period. Then increasingly when the construction project is completed successfully, a takeout in the bond market will occur, which also suits purchasers of bonds because they’ve got a rated product they can invest in.

Finally, we can see the exciting result of a world where construction has gone global in the taller buildings, faster public transit, and more brilliant skylines. With interconnectedness and complexity across borders comes the need for more innovative financing and an appreciation of new and different risks these trends present. Only by understanding the trends can we stay ahead of them. We look forward to analysing the trends, and enjoying the outcomes, together with those reading this report.

Michael W. Cooper
Head of Infrastructure, Asia Pacific
Capital Financing, HSBC Bank Malaysia

Trevor Sturmy
Head of Infrastructure and PPPs,
Europe and Sub-Saharan Africa
HSBC Bank PLC
AIG would like to extend a special thanks to those interviewed within this report:

- Mark Bonnar, Regional Head of Construction & Energy Casualty, APAC, AIG
- Robin Johnson, Head of Broker and Client Management, Asia, AIG
- Dr. Barbara Samuels II, Executive Director and Founder, Global Clearinghouse for Development Finance
- Ken Terpstra, Project Manager for California Highway Department
- George J. Pierson, President and Chief Executive Officer, Parsons Brinckerhoff
- Roberto Pons, CEO, Projectlab
- The Honourable Edmund Lee, Mayor of San Francisco, California
Construction Goes Global

Executive Summary

Growth in the global construction industry is on an unprecedented trajectory, fuelled by the growth of cities and accelerated development in emerging markets. In an increasingly global society, construction projects are no longer bound by borders, bringing both an interconnectedness and a complexity. For the first time ever, rising economies are hosting the majority of the world’s construction projects. In less than a decade, emerging markets have gone from posting a third of the world’s construction work to just over half of the industry’s total revenue.1 And in the next ten years, nearly two thirds of all construction activity will take place in these rapidly developing nations.2

In an economic cycle of booms and busts, this dynamic shift is projected to be a long-standing trend,3 rather than a simple economic upswing and corresponding downswing. If economists are correct, an expansion of the worldwide construction industry in dollars is set to outpace the growth of the world economy and should continue for decades.4

Driving record breaking construction numbers are three events. First, the historic reemergence of an ancient economy: China, which undertook a series of economic reforms to transition to a market-based economy. The “Central Nation’s” quarter of a century economic rise is also lifting neighbouring economies, including the Philippines, Vietnam and Indonesia. On other continents, China’s quest for resources is driving construction activity upward in both Africa and Latin America. India, while trailing China in overall growth, is also making an impact.

Second, mass urbanisation. A rise in population and a growing middle class is creating demand for transportation, housing and basic utilities, especially energy. The rise in urbanisation is particularly keen in Asia, and it is bringing along with it a correlated increase in the middle class.

By 2030, more than 55 percent of the Asian population will live in cities, according to the Asian Development Bank.5 Furthermore, the United Nations (U.N.) predicts the global urban population to top 6.25 billion by 2050—80 percent of whom are anticipated to live in cities within Africa and Asia.6 More immediately, the U.N. anticipates that 80 percent of the urban population added in the next 15 years will occur in countries like China, India, South Africa, Nigeria, Indonesia and Pakistan.7 Urbanisation will remain the largest driver of economic growth in China over the next decade, according to Morgan Stanley Smith Barney.8

And thirdly, construction starts around the world are up due to creative financing. Large private and state-owned firms are financing their own work in exchange for concessions. As the projects included later in this report show, road, rail and port facilities are being built in sophisticated exchanges for commodities, including food. And national banks remain a source of low-interest loans to favoured firms.

Global growth is increasing the complexity of multinational construction programmes. As a result, infrastructure endeavours are more commonly massive in scope, well over a billion U.S. dollars. Firms are venturing beyond their national borders making global infrastructure delivery a robust forum of foreign construction firms. Fabrication is taking place in multiple countries and a project’s supply chain can involve multiple nations. When building, these firms often bring their own work forces, creating small cities of workers to support the large-scale projects in Africa, Latin America and the Middle East. The boundaries of these projects often cross international borders.

Conversely, the advantages in the global market belong to firms with the keenest understanding of the local market in which they operate. Risks on the legal, compliance and tax fronts are traps that ensnare the most sophisticated contractors. The ramifications can be devastating to newer players on the world stage. Longer supply chains put greater pressures on schedules and create more opportunities for damages, while also increasing loss and customs complications. When international firms are involved, litigation and risk can involve numerous jurisdictions.

“Messy complexities,” is what Thomas P. Hughes, author of Rescuing Prometheus: Four Modern Projects That Changed the Modern World, calls these large projects. In the modern world, Hughes argues, increasingly complicated, costly and capricious projects are demanding sophisticated project management. Comprehensive approaches that ensure the timely and safe delivery of a project are no longer an advantage but rather a necessity.9

The United Nations predicts the global urban population to top 6.25 billion by 2050—80 percent of whom are anticipated to live in cities within Africa and Asia.

2. Urban World: Cities and the Rise of the Consuming Class,” p. 4

Mega Projects, Major Trend

Planning, building and maintaining the world’s large scale infrastructure projects has triggered the global movement of owners, architects, engineers, contractors and manufacturers from nearly every continent.

Today, seven of the 20 largest global construction firms are Chinese-owned. Japan, Spain, France and the United States are represented by two firms each, according to Engineering News-Record’s 2013 ranking of top global contractors. Australia, Austria, Brazil, Germany and Sweden each have a domestic firm in the top 20.1 The ranking is based on total revenues, which includes both work done domestically and in other locales.

The growth of a global construction community and the pace of its expansion are set to continue into the foreseeable future. Current global infrastructure demand is $4 trillion annually, according to the World Economic Forum.2 At this rate, global construction will outpace global GDP by 2025, according to the publication Global Construction 2025.

“This is a really big trend. It’s a very fundamental shift in the construction industry of the globe and it’s ongoing,” lectures Graham Robinson, author of Global Construction 2025. “If you look back to 2005, 35 percent of all construction globally was in emerging markets. Today, 52 percent, so we are at a tipping point. And we are going to zoom up to 63 percent,” Robinson predicts when looking to 2025. “That’s a huge shift in volume that’s going to be built in emerging markets versus those developed markets.”3

Demand for the delivery of global infrastructure is at a peak and the global construction community stands to make impressive gains. However, the needs of many nations remain unsatisfied. Industrious and purposeful projects with noble intentions are going unrealised because of the limited resources among countries wanting to modernise.

“We’ve talked a lot about the demand potential. What we haven’t talked about is whether the world’s got the resources to actually deliver on this level of construction,” warns Jonathan Hook of PricewaterhouseCoopers LLP’s global engineering & construction industry practice, “How is the world going to prioritise its resources if it is going to deliver this sort of growth?”4

Regardless of certain emerging markets’ ability to supply the resources necessary to design, build and maintain vital civic projects, this pattern is set to continue for decades. The global construction industry will persist in delivering these projects at increasingly ambitious schedules. The issue is which countries rise to the challenge to successfully deliver vital civic projects? Those markets are the ones that are underway with intensive urbanisation policies. The two are interdependent: urbanisation both drives and demands civic projects.

Desirable Density

The world is urbanising as quickly as it is populating. “By 2050, there’ll be two billion additional city dwellers; sustainable urbanisation will be a major construction challenge and the industry must strive to find innovative new products and solutions to contribute to building better cities,” says Bruno Lafont, Chairman and Chief Executive of global building products Lafarge.5

The population explosion is forcing governments to urbanise in order to increase efficiencies of delivery while providing even more goods and services. In 1999, U.N. Secretary General Kofi Annan proclaimed the birth of a baby boy in India as the world’s six billionth person. Twelve years later, the U.N. made another birth announcement, this one of a baby girl in October of 2011—the seven billionth person on the planet.6 Further projections anticipate that the world’s population will reach nine billion in 2043, and 10

Construction Goes Global

billion in 2083, respectively. In less than a century the world’s population will have doubled. To meet this crushing population the most practical way to accommodate the world’s rapidly increasing population is to build bigger—smarter—cities. This requires infrastructure modernization.

Universal urbanisation is being driven by necessity and desirability. Seeking wages, healthcare and education for their children, millions are populating the cities of the fastest growing economies. Governments of these rising economies are encouraging the trend. When it comes to preserving natural resources, economising on energy and benefiting from an economy of scale for necessary services such as schools, urbanisation holds the most promise.

Super Supply Chains

The connection between infrastructure investment and population benefit is increasingly clear. A case in point is China’s infrastructure frenzy that began with Deng Xiaoping in the 1980s. In this instance, researchers found that public infrastructure investment led to growth and provided benefits for the poor. Between 1980 and 2000, it is estimated by the World Bank that nearly half a billion Chinese were lifted above the poverty line.

Researchers determined that "the conclusion that infrastructure both raises growth and lowers income inequality implies that infrastructure development is a key win-win ingredient for poverty and inequality reduction. In addition to raising society’s overall economic growth, it also helps raise the share of income earned by the poor. Infrastructure development within China has proven to be one of the most effective ways to reduce poverty. Development along these lines suggests that it is also an effective way to create equality within the Central Nation’s populace."

China invested $600 billion in its roads, focusing on better connecting its larger cities. That investment is attributed to a growth in income of six percent.

As other countries attempt to follow China’s model, many investors find delays in project readiness. According to a World Economic Forum study: “The reason for this paradox, especially in developing countries but also in some developed countries, is the ‘project preparation gap’, i.e. the shortage of well prepared, bankable [public private partnership (P3)] projects where investors are sufficiently reassured by the commercial and technical feasibility, the risk allocation, the public sector’s contractual commitment and capacity as well as the institutional and legal framework.”

Not all of the potential for global construction remains in emerging markets, however. The United States and Europe—both once leaders in infrastructure investment—now find themselves with ageing infrastructures desperately in need of retooling to compete with improving supply chains worldwide.

Lastly, investing in the world’s premier urban areas is becoming increasingly desirable. London, New York and Hong Kong are considered some of the most coveted locations for the world’s wealthiest to own property and for their children to attend school. London property has become an investment class in itself, making it the most expensive city to live in. Similarly, New York and Paris also have growing investment appeals. While the focus on infrastructure investment in developing nations is grabbing much of the focus, more established cities and countries should not be ignored.

Regardless of region, multinational projects have brought with them new risks “and clients really need to be more sophisticated in the way that they now approach these risks,” said Robin Johnson, AIG’s Head of Broker and Client Management, Asia. “For instance, where there is fabrication in multiple countries, if a client were to fail to buy the right programmes, they face the chance that the risks won’t be covered, that there will be gaps in coverage. Before the globalisation of these mega projects that simply wasn’t the case. You could just buy a policy in the single country you were working in and be relatively certain that it would cover what you needed it to cover.”

8. “China From Poor Areas to Poor People,” Poverty Reduction and Economic Management Department, World Bank, March 5, 2009, p. 5.
Heathrow Airport Terminal 2B, London, UK

The construction of a new terminal called T2B at Heathrow International Airport was a global mega project in itself. A challenged project management team found itself enforcing security procedures on each employee as well as screening for explosives of materials brought onsite. The T2B project was a practice in business continuation. Active terminals remained so, forcing heavy construction equipment to work alongside jumbo jets. Lurking below the visible obstacles was the digging of a massive tunnel to connect terminals.

The T2B project was part of an overhaul of the entire terminal, a $4.2 billion project. Politically, before the undertaking could move forward, project officials had to confront the airport expansion debate from a few years earlier. In 2008 Terminal 5 opened to problems large and small. Within the first few days of service more than 300 flights were cancelled because of faults with its new baggage system. Adding to the legacy of woe, employees were handicapped in providing basic services, with challenges in finding places to park their personal vehicles.

To overcome engineering and construction complexities, digital programming and prefabrication solutions were performed. With the long-term political debate over whether Heathrow, Gatwick or a new airport might better serve London’s expansion plans, it was important that T2B be delivered on budget and on time. Digitally, solutions to the airport’s engineering and construction challenges were found in packages of software. Building Information Modelling (BIM) was primarily used to keep the project on schedule and to allow for modular components to be built offsite. Computer systems also organised scheduling challenges created by a lack of storage onsite. Organising them with computer driven just-in-time delivery methods was essential.

BIM methods also allowed Balfour Beatty, since it focused on the air side of the project, to continue construction without affecting airport services and to simulate potential threats and safety issues. It also used 4-dimensional modelling to show the state of the building when construction would be completed. Parsons Brinkerhoff (PB), the Balfour Beatty subsidiary that oversaw the 4D modelling, reported that the BIM system was used daily at all management meetings and with suppliers. By assessing changes before implementation, PB estimated the design worth had increased by 39 million pounds. “For Heathrow Airport Ltd., seeing integrated project controls in action was incredibly reassuring.”

General contractor HETco (a joint venture of two British firms, Ferrovial Agroman UK and Laing O’Rourke) oversaw the main Terminal 2 project while U.S.-based Balfour Beatty was lead on 2B. BIM allowed for significant offsite fabrication—which Balfour Beatty estimated shaved 10 weeks off the time frame for the first phase of its portion of the project. The T2B project was part of an overhaul of the entire terminal, a $4.2 billion project. Politically, before the undertaking could move forward, project officials had to confront the airport expansion debate from a few years earlier. In 2008 Terminal 5 opened to problems large and small. Within the first few days of service more than 300 flights were cancelled because of faults with its new baggage system. Adding to the legacy of woe, employees were handicapped in providing basic services, with challenges in finding places to park their personal vehicles.

A mechanical plant room for T2B was delivered in eight sections and installed in two weeks—instead of 26. Multi-service risers were installed in one night, compared to the typical six weeks had they been built onsite.

For the main, massive five-story terminal, BIM proved successful, especially in the number of parts fabricated offsite. Only the terminal’s concrete raft foundations—which required heavy reinforcements to support the Airbus A330 jumbo jets—were constructed onsite. The entire main terminal was built without movement joints, which Laing O’Rourke attributed to a combination of bracing cores, intense laser scanning and BIM modelling, which allowed the design team to fix any movement throughout the construction process.

Resorting to digital modelling allowed the Heathrow’s T2B project to maximise efficiencies throughout its supply chain while reducing risks by keeping a tight oversight on each stage of mega construction.
Makkah (Mecca) Mass Rail Transit, Saudi Arabia

When Saudi Arabia’s King Abdullah bin Abdul-Aziz and China’s President Hu Jintao met in February of 2009, the first phase of a construction project to build a rapid mass transit was launched. The main purpose of the transportation project—known as the Makkah (Mecca) Metro—is to accommodate devout Muslims during the hajj, a five-day pilgrimage of faithful from around the world to Mecca’s Great Mosque.

Shortly after the contract signing ceremony, thousands of Chinese workers began occupying work camps in Saudi Arabia in order to start building the first phase of the $20 billion project. Cultural and political sensitivity was vitally important on this project. Aware of the consequences of missing a seemingly impossible deadline, the foreign contractors became interdependent. Heavy rains and high heat made for harsh conditions. Defaulting on the deadline triggered hefty penalties and endangered the promise of billions more in contracts in Saudi Arabia. The multi-national team, however, delivered the project in record time. Within 20 months, the China Railway Construction Corporation, eager to export its newly developed expertise in rapid mass transit, excavated, laid track and delivered world-class rolling stock. Siemens of Germany built the power supply system, installed overhead contact lines and substations as well as delivered switches and diesel generators. Parsons Brinckerhoff, a design firm based in New York City and owned by the United Kingdom’s giant Balfour Beatty, consulted on engineering and construction throughout the project.

The interconnectedness was the key to success in meeting a seemingly impossible deadline, all while adhering to local cultural sensibilities.

Wheatstone Project, Australia

The world’s demand for energy supplies to power growing cities and to support the population boom is driving the Wheatstone Project just west of Onslow in Western Australia. Australia is sitting on a 100-year supply of natural gas and the country’s proximity to Asia, and the region’s rapidly increasing thirst for new energy sources, provide the drive for the Wheatstone Project.

The Wheatstone Project is poised to capitalise on the liquefied natural gas (LNG) boom. A global venture, the owners are international in scope. Key stakeholders include the Australian subsidiaries of Chevron (64.14%), Apache (13%), Kuwait Foreign Petroleum Exploration Company (KUFPEC, 7%), Shell (6.4%), and Kyushu Electric Power Company (1.46%), together with PE Wheatstone Pty Ltd (part owned by TEPCO, 8%). The construction is being handled by a variety of global enterprises. Customers have already lined up agreements to purchase LNG once Wheatstone is viable. Although the project is still in the early stages, Chevron discovered the natural gas field in 2004; groundbreaking began in 2011, Chevron has already made significant progress, both locally and globally, on the $29 billion project.

In addition to the international consortium of owners, Wheatstone has included steel from Korea and China. Daewoo Shipbuilding & Marine Engineering Co. in South Korea is constructing the platform. Additionally, the Kiewit Ertech Joint Venture was awarded the Construction General Services 3 (CGS3) subcontract from Bechtel, having completed the Front End Engineering and Design (FEED), was awarded the engineering, procurement, construction and commissioning contract by Chevron. Australian company Thiess landed a subcontract from Bechtel for the onshore site clearing and preparation including bulk and final-finish earthworks for the plant, storm water drainage system and access roads around the project. Additionally, the Kiewit Ertech Joint Venture was awarded the Construction General Services 3 (CGS3) subcontract from Bechtel.

Bechtel, having completed the Front End Engineering and Design (FEED), was awarded the engineering, procurement, construction and commissioning contract by Chevron. Australian company Thiess landed a subcontract from Bechtel for the onshore site clearing and preparation including bulk and final-finish earthworks for the plant, storm water drainage system and access roads around the project. Additionally, the Kiewit Ertech Joint Venture was awarded the Construction General Services 3 (CGS3) subcontract from Bechtel.

Wheatstone Project.

Australia is sitting on a 100-year supply of natural gas. The country’s proximity to Asia, and the region’s rapidly increasing thirst for new energy sources produce the drive for the Wheatstone Project.

Bechtel. Australian firms will also handle the 3,800-bed construction village with John Holland constructing the Construction Village buildings and utilities and their subcontractor Ertech undertaking roadwork and earthwork. Australian company Thiess and Belgian firm BESIX SA will develop the breakwater and materials offloading facility.39

Wheatstone sits in the midst of a $200 billion building boom; a total of seven major LNG projects are under construction in Australia.40 They will join the three major operations currently in existence. Forecasts show Australia with a 100-year supply of natural gas41, with most of that concentrated on the country’s northwest coast. Exported in liquid form, Australia ranks as one of the top producers of liquefied natural gas (LNG) consumed in Asia.42

Note that many of the owners of the project are energy companies looking for a ready supply. Before the project had lowered its first drill, 80 percent of the resources were spoken for.43 That shows a willingness on the part of energy companies to continue to invest in securing their supplies.

The project also showcases the sophistication of resource-rich regions. Requiring numerous commitments to hire and invest locally, the endeavour provided roughly 6,500 jobs at peak construction. An estimated $17 billion of revenue is generated to Australian businesses and services.44 Chevron also is spending $250 million on infrastructure projects in nearby Onslow, including community facilities, roads and water infrastructure and education and health services.45 That is the result of an agreement with the Thalanyji People, who hold the native title to the region.

In all, the project is expected to provide an estimated $20 billion in government revenues during the construction phase.46

Wheatstone is far from alone. The Ichthys LNG project in Australia’s Northern Territory likewise was an international project. Fabrication alone took place in three different countries: Philippines, Korea and Malaysia.47 Approximately 70 percent of the LNG is to be delivered to Japan, including Tokyo Power, Toho Gas, Chubu Electric Power and INPEX Corporation, the project’s ultimate owner. The remaining supply will go to Taiwan. Some two dozen commercial lenders from Japan, Australia, Korea, France, Germany and The Netherlands were involved in financing the project.48

Construction is international in scope as well. British firm AMEC Engineering landed the front-end engineering design (FEED) work. Houston, Texas-based KBR joined two Japanese firms—JGC, Inc., and Chiyoda Corp. in landing key construction roles.49 Korea’s Samsung Heavy Industries Co., and two U.S.-based companies, General Electric Co. and McDermott International Inc., were awarded development contracts.

Açú Port, Brazil

Brazil is an ever-expanding player on the world’s economic stage. It is rich in iron ore and oil; its farmers are among the world’s most prolific suppliers of soybeans and grains, and Brazil’s current progress earned the country the hosting rights to both the 2014 FIFA World Cup and the 2016 Summer Olympics (both first-time awards for South America as a whole).

Currently, Brazil moves more than three-fourths of its agriculture to port via roads. In the soybean growing region of Rondonpolis, a 125-mile round trip to the state capital Cuiaba takes eight hours.50 That is just the first step of the journey to reach the ports. As a result of transportation delays, ships attempting to reach existing ports can expect a 15-20 day wait to load Brazilian goods.51

With private Brazilian enterprises struggling to build the level of infrastructure the country requires, President Dilma Rousseff signed a law in mid-2013 designed to strengthen its ports. The multi-pronged approach allowed for the development of new ports near existing locations, as well as the privatization of existing ports.

One port— Açú Superport—was already well underway as a private enterprise. The “superport”, located north of Rio de Janeiro, is dubbed the “Highway to China” and can accommodate the Chinamax, the largest

A rapidly expanding global market, Brazil is proof of how a commitment to infrastructure improvements can set off a construction boom that draws global interest.
cargo vessel currently in operation, carrying 400,000 tons of cargo. This is a vitally important venture considering that Rio is located less than 100 miles from 85 percent of Brazil’s oil production facilities.

The Açú Port project is the brainstorm of Brazilian entrepreneur Eike Batista. The Spanish firm Fomento de Construcciones and Contratas (FCC) oversaw construction of the project. Because the new breakwater is more than 1.5 miles long and 65 feet high, the first nine caissons were built in Spain, which was better equipped to handle the size and scope of this endeavor. The caissons were shipped to Brazil on semi-submersible vehicles, a trip that took more than 15 days. Dutch company Boskalis handled dredging on the second terminal.

A global operation from the outset, with numerous commitments from foreign outfits for port leases, French oil and gas company Technip, French steel pipe maker Vallourec SA, and Finnish ship engine manufacturer Wärtsilä were among the first to lease space in the “super port” and its surrounding areas.

Despite the heavy international investment in the project, LLX, which was created by Batista solely for port management, hit rough financial seas. In 2013, just after the port opened, the U.S. firm EIG Global Energy Partners LLC, brought an infusion of cash to LLX; it assumed control of the company and its signature project, Açú. The Ontario Teachers Union Pension Plan is another significant investor.

While the Açú Port project may be majority U.S.-owned thanks to EIG, at this time, other port concessions (similar to a lease)—expected in early 2014—should also draw global interest. Singapore’s state-run port terminal operator PSA was among the first to express its intentions to bid.

In addition to its ports, Brazilian leaders are also currently considering privatization of highways, airports, railways and energy production. A rapidly expanding global market, Brazil is proof of how a commitment to infrastructure improvements can set off a construction boom that draws global interest.

It also is a country ripe for investment and foreign involvement. Not only does Brazil possess numerous natural resources, the interest from the 2014 Fifa World Cup and the 2016 Olympic Games have the country in a building frenzy. With its federal government feeling the pressure to improve infrastructure ahead of these two events, it seems willing to look outside for construction involvement, financing, and ownership.

Metro Rail 9, Barcelona, Spain

Roman armies laid down Barcelona’s streets on the edge of the Mediterranean Sea nearly 2,000 years ago. Today in Europe, nearly 11,000 Barcelonians per square mile are hemmed in by the sea, two rivers and a mountain range. Only London and Madrid have greater residential density.

Originally Barcelona’s influence was through its port. Today, however, the constantly morphing Spanish city contributes heavily to Europe’s overall trade, wealth and desirability by all methods of transport. Spain’s new highways and its high-speed rail services connects Europe and the Iberian Peninsula through the ancient port city. Barcelona’s recently renovated airport makes the city a modern-day destination for business and tourist travelerstravellers.

Accommodating a metropolitan population of approximately 5 million, however, meant developing its core civic infrastructure: The Metro. A vital link between Barcelona’s past and future lies underground in Europe’s longest subway tunnel, also known as Metro Rail 9. With an overall length of 47.8 kilometers, the new line now connects the El Prat Airport—which itself underwent massive infrastructure building—to the city’s ports, medical facilities, educational institutions and tourist destinations.

With a price tag of $8.4 billion, Metro Rail 9 was designed to connect key components of the city while eliminating the traditional hub and spoke centrist design. This is effectively reducing commuter traffic in the city’s core by eliminating the need to go into the congested city centre to change trains.

To better move its citizens throughout, Metro Rail 9 was built almost exclusively underground through extreme conditions of rock and sand. Rails running each direction are separated by a slab. Complex tunnelling over extreme distance—in a city that is built upon the ruins of an ancient Roman city—required a multinational consortium.

The general contractor was a joint venture of Spanish firms FCC, Copcisa, OHL, Ferrovial and Copisa. However, key portions of

56. “Barcelona Metro Rail 9, Spain.”
58. “Barcelona Metro Rail 9.”
the work were performed by German-based Siemens which oversaw the train and signalling system. Canada’s ACCIONA constructed five stations and 4,600 meters of tunnel—3,900 of which was done with a tunnel boring machine (TBM). Two other German-manufactured TBMs—Hades and Guster—continuously topped each other’s performance. Tunnelling records were set for best working day, best weekly production and best monthly production. Because of the duration of the project’s schedule—begun in 2003 and not completed until 2014—specifications underwent several changes. The initial plan was to line the tunnel bores with precast concrete. Maccarferri, the Italian engineering firm, continued to refine its precast concrete sections, reducing the steel bar within the segments. Contractors proposed eliminating steel cage reinforcements altogether. Maccarferri began a series of academic tests to determine the viability of fibre-reinforced concrete. Though the test proved successful, the project team opted to mix steel with steel fibres to avoid introducing such new technology into the project. Because of the duration of the project’s schedule—begun in 2003 and not completed until 2014—specifications underwent several changes. The initial plan was to line the tunnel bores with precast concrete. Maccarferri, the Italian engineering firm, continued to refine its precast concrete sections, reducing the steel bar within the segments. Contractors proposed eliminating steel cage reinforcements altogether. Maccarferri began a series of academic tests to determine the viability of fibre-reinforced concrete. Though the test proved successful, the project team opted to mix steel with steel fibres to avoid introducing such new technology into the project. The length of time involved created another issue for the project team. When the Spanish legislature introduced legislation to reduce the risk of fire in tunnels, the project team had to incorporate polymer reinforcement fibres into the concrete liners. The project, successfully completed in 2014, advanced tunnel engineering that will be critical to rapid urbanisation, which is forcing ever larger ever civic projects to be built further below the earth.

Conclusion

International construction brings both promise and potential peril. “Global...firms are benefiting from the sea of change around infrastructure delivery. Dynamic changes in practices of how vital large-scale project planning, designing and constructing are carried out is creating the greatest opportunities ever seen in the global construction market,” explains Roberto Pons, a graduate of Princeton University’s engineering school and Oxford’s Said Business School. Pons is also the founder and CEO of Brazilian based Projectlab, a project management educational provider. Still, one claim against a single contractor can put billions of dollars at risk. “The complexities in today’s projects: a multitude of international firms performing design, construction, and maintenance services, longer supply chains, thousands of workers in camps on foreign soil, and constructing along accelerated delivery schedules, all give rise to the chances of litigators winning their claims,” counsels Pons. “A short while ago, litigators were limited to one or two countries. Now, with numerous international firms involved in a single project, there is a greater chance that lawsuits will have a more costly settlement. A refinery project in Angola may have designers that are European, financiers from the United States, and a joint venture general contractor from Asia. Because one member of a large team is from the United States, the American court system becomes a viable jurisdiction.”

Today, the delivery of large scale construction projects is truly a worldwide venture, fuelled by accelerated urbanisation and development around the globe. As opportunities for cross border project delivery continues to evolve, so do the complexities. From foreign financing to fabrication across multiple countries, success in global infrastructure delivery increasingly depends on effective project management at both the local and international levels. In meeting changing infrastructure needs, firms need to be well versed in recognizing and mitigating potential risk exposures. More global projects likely bring an increased level of risk. When the complexity of multiple jurisdictions is introduced, different legal exposures, contractual obligations, tax and compliance issues, and cultural norms such as worker safety, must be taken into consideration.

For those looking to lead in this increasingly global industry, world-class risk management strategies are key.

62. “Case History.”
63. “Case History.”
64. “Case History.”